

Higgs Boson Searches With The Early LHC Data

Vivek Sharma University of California, San Diego (On behalf of ATLAS & CMS Experiments)

1

Story So Far: Direct Searches For Higgs

arXiv:1001.4162

LHC & Tevatron : A Basic Comparison

 10^{3}

Higgs Sensitivity @ 7 TeV with 1 fb⁻¹

- Predicting future is dodgy business !
 - but one tries nevertheless
- Projections based on published 14 TeV studies (2008 and earlier)
 - Based on analyses constructed to discover Higgs, not set best limits
 - 7 TeV simulation studies ongoing but not completed
- Projections not rigorous: <u>Indicative not predictive</u> !& designed to be conservative
- Will mostly show today projections from CMS
 - ATLAS projections in public domain "soon", expected to be similar to CMS
 - CMS Event reconstruction and analysis methodology as of 2008, not the current (improved) state-of-the-art
 - Projection method verified, in CMS, on complete analyses of 10 TeV pp simulations (but without pileup; which is important)

CMS 7 TeV Projections Workflow

- Start with results at 14 TeV (int. luminosity used varies: 1-30 fb⁻¹)
- Re-scale signal and bkgd event counts by the ratio of 7 to 14 TeV cross sections and project for an integrated luminosity of 1 fb⁻¹
- Use NNLO σ for gg \rightarrow H (30% gain) , NLO for VBF & VH
- Apply no correction for higher acceptance at smaller sqrt(s), which can be up to 20%
- Scaled systematic errors:
 - for backgrounds derived from control samples \Rightarrow scale as 1/sqrt(N)
 - other errors: assess whether to keep as is (e.g. theoretical errors) or inflate to correspond to the smaller data set
 - take into account correlations in systematic uncertainties
- Statistical analyses of Sensitivities:
 - Use re-scaled event counts and re-evaluated systematic errors
 - Exclusions: Modified Frequentist (CL_s), Significance: Profile Likelihood ⁶

Background Cross Sections used

General background sources

process	$\sqrt{s} = 14 \text{ TeV}$	$\sqrt{s} = 10 \text{ TeV}$	$\sqrt{s} = 7 \text{ TeV}$	comment
$W \to \ell \nu$	3*20283.7	3*14253.7	3*9679.9	MCFM NLO
$DY(20-\infty) \to \ell\ell$	3*3259.7	3*2323.6	3*1606.6	MCFM NLO
WW	112.5	71.4	42.9	MCFM NLO
WZ	51.0	31.4	18.3	MCFM NLO
ZZ	15.6	9.9	5.9	MCFM NLO
$tar{t}$	918	415	165	MCFM NLO
Wt	56.1	26.0	10.5	MCFM NLO
tq-t channel	244.6	130.5	62.8	MCFM NLO
tq-s channel	11.9	7.6	4.6	MSTW 2008 NNLO
$W(\rightarrow \ell \nu) + \gamma$	54.7*1.8	$35.4^{*}1.8$	23.2*1.8	NLO k-Factor from Bauer
$Z(\to \ell\ell) + \gamma$	17.5*1.8	11.3*1.8	7.3*1.8	NLO k-Factor from Bauer

$H \rightarrow WW$: Most Prolific Decay mode

- Signal: two isolated leptons with small $\Delta \phi$ + MET + no central jets (jet veto)
- Backgrounds reduction:
 - WW: $\Delta \phi \& m_{ll}$
 - ttbar: cental jet veto, $\Delta \phi \& m_{ll}$
 - W+jets: lepton id
 - DY alleviated by MET requirement
 - WZ/ZZ: 2 leptons in final state, MET
- look for excess above a cut on NN output

 main backgrounds are assessed using datadriven techniques: WW, ttbar, W+jets, Drell-Yan

$H \rightarrow ZZ^{(*)} \rightarrow 4$ leptons

$H \rightarrow ZZ^* \rightarrow e^+e^-\mu^+\mu^-$

- Signal: four isolated leptons, look for 41mass peak [count in sliding mass window]
- Backgrounds:
 - ZZ : irreducible background, [rate assessed from data—Z events]
 - ttbar & Zbbbar removed by lepton isolation & impact parameter veto
- Narrow mass peak, low background
- But low yield \Rightarrow need to push lepton id

$\mathrm{H} \to \mathrm{Z}\mathrm{Z}$

$H \rightarrow \gamma \gamma$

Fermiophobic Higgs: Back-of-Envelope

Fermiophobic/SM ratios

Fermiophobic/SM (see plot on the right)

 $gg \rightarrow H$ disappears \Rightarrow loss of a factor of 10 in H cross section [blue line] Gain a large factor in BR(H $\rightarrow\gamma\gamma$) [black line] CS x BR larger than that of SM up to 130 GeV

If do <u>nothing</u> special (charateristic kinematics) for fermiophobic Higgs,

r~4 for SM Higgs (see left plot) implies that Possibly exclude fermiophobic Higgs with m~110 GeV (see right plot), which is better than Tevatron, comparable to LEP limit

CMS: All Modes Combined

SM Higgs expected excluded range: **145-190 GeV** SM Higgs with 4 fermion generations: < ≈ **420 GeV**

[CMS x 2 Projection] \approx ATLAS+CMS

SM Higgs expected excluded range approx: 140-200 GeV discovery range approx: 160-170 GeV SM Higgs with 4 generations can be ruled out to M_H ≈ 530 GeV 15

MSSM Higgs In pp \rightarrow bb Φ ; $\Phi \rightarrow \tau^+ \tau^-$

From Projections to Reality

Early ATLAS & CMS Performance in LHC Collision data

Key Preparation Before LHC Collisions

- Several Cosmic ray data campaigns prior to LHC collisions
 - ~ 1 Billion cosmics analyzed
 - Has led to well understood detector <u>in advance</u> of pp collisions in 2009
 - Timing, alignment, resolution, coherent running, trigger, DAQ etc

Run 66748, Event 8919719, LS 160, Orbit 167649748, BX 2350

7 TeV Run So Far

More than 4.5 nb⁻¹ accumulated so far

ATLAS & CMS data taking efficiency ≈ 96% under stable 7 TeV beam conditions

Excellent Hardware Performance

Subdetector	Number of Channels	Approximate Operational Fraction
Pixels	80 M	97.5%
SCT Silicon Strips	1.5 5.3 M	99.3%
TRT Transition Radiation Tracker	350 k	98.0%
LAr EM Calorimeter	170 k	98.5%
Tile calorimeter	9800	97.3%
Hadronic endcap LAr calorimeter	5600	99.9%
Forward LAr calorimeter	3500	100%
LVL1 Calo trigger	7160	99.8%
LVL1 Muon RPC trigger	370 k	99.7%
LVL1 Muon TGC trigger	320 k	100%
MDT Muon Drift Tubes	350 k	99.7%
CSC Cathode Strip Chambers	31 k	98.5%
RPC Barrel Muon Chambers	370 k	97.3%
TGC Endcap Muon Chambers	320 k	98.8%

≈ 100M channels≈ 98% channelsoperational

Performance With Collision Data

Collision Event at 7 TeV with Muon Candidate

Pixel & Silicon Strip Tracker Performance

22

B-tagging: Works straight out of the box

Basic variables relevant for B-tagging compare well in data Vs MC

MC Normalized to Data

10

10

102

10

2

Signed 3D impact parameter for all tracks selected for btagging in jets with pT > 40GeV and $|\eta| < 1.5$

CMS Preliminary 2010

6

8

10

no. of tracks at SV

MC (light) MC (charm) MC (bottom)

Performance of EM Calorimeters

Next Step: Rediscovering the Standard Model

Precondition to searches for new particles and BSM phenomena

Strange, Charm and all that

Jets are 310 GeV and 350 GeV at EM scale – highest PT di-jet event so far !

Jets & Dijets @ 7 TeV

Transverse Missing Energy (MET)

Excellent agreement between Data and simulations over more than **5 orders of magnitude**

For Higgs searches, MET requirement is modest \sim [40-100] GeV

$Z \rightarrow e^+e^-$

CMS Experiment at LHC, CERN Run 133877, Event 28405693 Lumi section: 387 Sat Apr 24 2010, 14:00:54 CEST

Electrons $p_T = 34.0, 31.9 \text{ GeV/c}$ Inv. mass = 91.2 GeV/c²

The Road Ahead at LHC

Summer 2010	End of 2010	Fall 2011
~1 pb ⁻¹	~100 pb ⁻¹	$\sim 1000 \text{ pb}^{-1} = 1 \text{ fb}^{-1}$
	a ma a mta	

- QCD, b measurements
- W, Z cross sections
- Electroweak program
 + Higgs program
- Early ttbar observation
- Early searches, mainly Exotica
 - + top physics program
 - + broad search program: Mainly Exotica, SUSY

Higgs program starts With 250 pb⁻¹ →

LHC Plans For Next Weeks

- Increase single bunch intensity to $\sim 1 \times 10^{11}$ p/bunch
- To avoid risking safety of tertiary collimators, beams squeezed only to $\beta^*=5m$ (a factor 2.5 lost)
- To compensate for this increase number of bunches up to 16 (total power of about 1MJ in the machine)
 - Started with $2 \rightarrow 4 \rightarrow 6$ bunches already
- priority for LHC will be to give a sizeable amount of data to the experiments in time for the ICHEP
 - More than 300 nb⁻¹

Summary

- ATLAS & CMS well calibrated and have demonstrated agility in LHC data analyses : first results after few hour of data taking
 - First papers published
- Currently well on path of re-discovery of SM particles; hard work starts NOW !
- At 7 TeV & with 1 fb⁻¹ data, ATLAS & CMS will begin to explore a sizable range of Higgs mass
 - SM Higgs discovery sensitivity : [160-170] GeV
 - SM Higgs exclusion range : [140-200] GeV
 - Low mass SM Higgs searches require 14 TeV & high lumi running
 - MSSM Neutral Higgs discovery range: down to tan β ~20 for small m_A
 - MSSM Neutral Higgs exclusion range : down to tan β ~15 for small m_A
 - With large ttbar cross-sections, will be probing *terra incognita* in searches for H⁺ (ttbar cross-section is 20x Tevatron)
- Now awaiting luminosity promised, stay tuned !